A Guide to W3C Trace Context

Earlier this year the W3C Trace Context Recommendation was finally published. A standard way of passing distributed trace correlation has been needed for a long time, and it is good to see there is finally a standard, and many vendors have already moved to adopt it.

The Recommendation defines what a distributed trace is:

A distributed trace is a set of events, triggered as a result of a single logical operation, consolidated across various components of an application. A distributed trace contains events that cross process, network and security boundaries. A distributed trace may be initiated when someone presses a button to start an action on a website – in this example, the trace will represent calls made between the downstream services that handled the chain of requests initiated by this button being pressed.

What constitutes a single logical operation depends on the system. In the example above it is a single button press on a website, whereas in a batch processing system it might be for each item processed, or in a complex UI it might consist of both a button press and a subsequent confirmation dialog.

The W3C Trace Context Recommendation describes how the correlation information — an identifier for the operation, and the parent-child relationships between components — is passed in service calls, but doesn’t cover what to do with that information, apart from how to pass it to the next component.

This is a guide mostly how to use Trace Context for logging, although it also applies to metrics and other telemetry.

Continue reading A Guide to W3C Trace Context

Elasticsearch-Logstash-Kibana (ELK) LoggerProvider for .NET Logging

This ElasticsearchLoggerProvider, for Microsoft.Extensions.Logging, writes direct to Elasticsearch, using the Elasticsearch Common Schema (ECS), and has full semantic logging of structured data from message and scope values.

To use, add the Essential.LoggerProvider.Elasticsearch package to your project:

PS> dotnet add package Essential.LoggerProvider.Elasticsearch

Then add the logger provider to your host builder, and the default configuration will write to a local Elasticsearch service:

using Essential.LoggerProvider;

// ...

    .ConfigureLogging((hostContext, loggingBuilder) =>
    {
        loggingBuilder.AddElasticsearch();
    })

Once you have logged some events, open up Kibana (e.g. http://localhost:5601/) and define an index pattern for dotnet-* with the time filter @timestamp.

You can then discover the log events for the index. Some useful columns to add are log.level, log.logger, event.code, message, tags, and process.thread.id.

Structured message and scope values are logged as labels.* custom key/value pairs, e.g. labels.CustomerId.

Example: Elasticsearch via Kibana
Continue reading Elasticsearch-Logstash-Kibana (ELK) LoggerProvider for .NET Logging

Versioning .NET Core in Visual Studio Team Services

I have always found it useful for applications to display their build version, and for libraries to have the build version in their properties. Relying on properties like the date (or file size) is always a bit risky.

.NET Core has embraced Semantic Versioning and at first glance appears to have a new way to specify version numbers.

It doesn’t quite work to my full satisfaction, but luckily the older methods still work, so a basic GitVersion task in your build pipeline is pretty much all you need to get things working.

Continue reading Versioning .NET Core in Visual Studio Team Services