Smart Buildings — Running an OpenThread Border Router(18 min read)

Thread is a mesh networking stack running on 6LoWPAN (IPv6 over Low-Power Wireless Personal Area Networks) over IEEE 802.15.4 radios. To connect to the broader network, a Thread Border Router is required, which acts as a gateway between the Thread mesh radio network and upstream networks.

Thread, especially when used with Matter, is an important development for home automation, however the technologies also have commercial applications. The initial commercial focus of Thread is for smart buildings.

The networking layer sits between the underlying physical network, and the application layers on top.

Thread layers: UDP, IP Routing, 6LowPAN, and cross-cutting Security/Commissioning, with non-Thread layers beow IEEE 802.15.4 MAC and IEEE 802.15.4 PHY, and non-Thread applications layer above

Matter is an application protocol for device automation that runs on top of Thread (and also WiFi), with Bluetooth used for device commissioning. Matter 1.0 was also released in October 2022 and is supported by major home automation vendors (Google, Amazon, Apple, and Samsung), but can also be used in commerical deployments.

When provisioning a Matter device to a Thread mesh, Bluetooth is used for the initial provisioning and sets up both the connection the the Thread mesh and registration in the Matter Hub. One important aspect of Matter is multi-admin, allowing one device to be controlled by multiple hubs.

The layered approach means Thread can be used by itself, providing mesh networking for smart buildings using other protocols, or in conjunction with Matter.

The article also looks at setting up a OpenThread Border Router for testing, and shows provisions a Matter test device to the Thread mesh.

Continue reading Smart Buildings — Running an OpenThread Border Router(18 min read)

M5Stack Atom NB-IoT device with secure MQTT over IPv6(20 min read)

M5Stack produce a suite of pilot-suitable modular IoT devices, including the Atom DTU NB-IoT. The NB-IoT DTU (Narrow Band Internet of Things - data transmission unit) comes in a small 64 24 29mm case with a DIN rail clip on mounting and support for RS-485 including 9-24V power (or USB-C power).

The kit base has a SIM7020G modem and the ESP32-based Atom Lite (which also supports WiFi) is included with a very resonable price. The device has built in MQTT, supports secure public certificate TLS connections, and supports IPv6.

While the physical unit is ready for pilot deployment (and the M5Stack website has several commerical deployment case studies), there is no pre-written firmware for the device, so some up front development is needed.

As well as reviewing the strengths and weaknesses of the device, I will also provide some sample code for a proof-of-concept using an Env III environment sensor to transmit temperature, humidity, and air pressure to an MQTT test server using MQTTS (with server certificates), over IPv6, over NB-IoT.

M5Stack Atom DTU NB-IoT with Telstra SIM card

Continue reading M5Stack Atom NB-IoT device with secure MQTT over IPv6(20 min read)

Deployment ready NB-IoT device review — Unboxing the Dragino N95S31B(14 min read)

The Dragino NBSN95/NBSN95A family is a deployment-ready range of water resistant NB-IoT (Narrow Band Internet of Things) devices that are available pre-packaged with various sensors such as soil moisture, distance detection, liquid level, and temperature/humidity sensors.

NB-IoT is a Low-Power Wide-Area Network (LPWAN) technology that allows devices to be accessed in remote locations and operate on battery for long periods of time, up to many years.

In this article we will look a the N95S31B, the model with the pre-packaged temperature/humidity sensors, the strengths and weaknesses of the device, and then walk through configuing the device and see it connect to an MQTT test server. Our previous article showed you how to set up an MQTT test server on Azure if needed.

The NBSN95 is an open source project, with both the software and hardware specifications available, if you need to customise the application. We have also previously reviewed the Dragion LDDS75 LoRaWAN device.

Dragino wiring the serial connection

Continue reading Deployment ready NB-IoT device review — Unboxing the Dragino N95S31B(14 min read)