Deployment ready NB-IoT device review — Unboxing the Dragino N95S31B

The Dragino NBSN95/NBSN95A family is a deployment-ready range of water resistant NB-IoT (Narrow Band Internet of Things) devices that are available pre-packaged with various sensors such as soil moisture, distance detection, liquid level, and temperature/humidity sensors.

NB-IoT is a Low-Power Wide-Area Network (LPWAN) technology that allows devices to be accessed in remote locations and operate on battery for long periods of time, up to many years.

In this article we will look a the N95S31B, the model with the pre-packaged temperature/humidity sensors, the strengths and weaknesses of the device, and then walk through configuing the device and see it connect to an MQTT test server. Our previous article showed you how to set up an MQTT test server on Azure if needed.

The NBSN95 is an open source project, with both the software and hardware specifications available, if you need to customise the application. We have also previously reviewed the Dragion LDDS75 LoRaWAN device.

Dragino wiring the serial connection

Continue reading Deployment ready NB-IoT device review — Unboxing the Dragino N95S31B

LoRaWAN to Azure IoT — Unboxing the Dragino LDDS75

LoRaWAN devices are a popular solution for IoT, with many benefits, but they cannot connect directly to Azure IoT.

LoRaWAN devices communicate using LoRa to a local LoRaWAN gateway, which then communicates using standard protocols to a LoRaWAN network server. Only then can it be converted to a suitable IP-based protocol to connect to Azure IoT.

Even if they did share a common network, LoRaWAN IoT devices are often small, low-power, battery operated devices that operate in short bursts of minimal communication, and not the verbose communication expected by Azure IoT, so you would want to use a gateway anyway.

To test out connecting field-ready LoRaWAN devices to Azure IoT, I ordered a Dragino LDDS75 LoRaWAN Distance Detection Sensor, used to measure the distance between the sensor and a flat object. It can be used for both horizontal and vertical distance measuring, such as liquid level measurement or object detection (e.g. parking space).

Unboxing the Dragino LDDS75 Distance Detection Sensor

The Dragino platform uses open source hardware, with Dragino schematics and details fully available on github, although you are probably better off purchasing one than trying to build it yourself.

I set up the device up using The Things Network, a community network suitable for small scale testing, connected to Azure IoT.

Dragino, The Things Nework (LoRaWAN Gateway and LoRaWAN Network Server), and Azure IoT architecture overview

Continue reading LoRaWAN to Azure IoT — Unboxing the Dragino LDDS75

Unboxing the Dragino LPS8 LoRaWAN gateway

I recently got a Dragino LPS8 LoRaWAN gateway and set it up on my network. The LPS stands for LoRaWAN Pico Station.

The open source gateway runs a variant of OpenWRT and the latest version supports a range of LoRaWAN features including Basic Station. You can use it for a private network or set it up with a community as I did for The Things Network (TTN).

Unboxing the Dragino LPS8 LoRaWAN gateway

Read on for details of how easy it was to set it up securely.

Continue reading Unboxing the Dragino LPS8 LoRaWAN gateway